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Abstract
An exact solution of the model of fully packed loops of two colours on a
square lattice has recently been proposed by Dei Cont and Nienhuis using the
coordinate Bethe ansatz approach. We point out here a simpler alternative, in
which the transfer matrix is directly identified as a product of R-matrices; this
allows us to apply the (nested) algebraic Bethe ansatz, which leads to the same
Bethe equations. We comment on some of the applications of this result.

PACS numbers: 05.50.+q, 02.20.Uw, 02.30.Ik

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Models of fluctuating loops play a key role in two-dimensional statistical physics, and a range
of well-known models (Ising, Potts, percolation, O(n), to name but a few) can be conveniently
studied through their reformulations as loop models. Exact results about loop models have
been produced by a variety of techniques, including the Coulomb gas, conformal field theory,
the Bethe ansatz and the stochastic Loewner evolution.

In this paper, we study the fully packed two-colour loop model on a square lattice
(henceforth referred to as the FPL2 model) from the point of view of the algebraic Bethe
ansatz. The FPL2 model was introduced in [1] as a generalization of the four-colouring model
of the square lattice edges [2]. It is defined by assigning one of two colours (black or white) to
each lattice edge, subject to the constraint that every vertex be incident to two black and two
white edges. In this way, the black and white edges form fully packed loops which are given
fugacities nb and nw depending on their colour.

The FPL2 model has attracted much interest over the last decade. Successive advances
in the Coulomb gas technique have permitted to compute the central charge and the critical
exponents for a number of special cases: the four-colouring model (nb, nw) = (2, 2) [2, 1],
the dimer-loop model (nb, nw) = (2, 1) [3] and the equal-fugacity case nb = nw [4]. This
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eventually led to the solution for general values of nb and nw [5]. An interesting special case
is that of Hamiltonian walks, with (nb, nw) = (0, 1) [6]. A generalization of the FPL2 model,
obtained by giving the loops a bending rigidity, was given in [7]. It contains as a special case
the so-called Flory model of protein melting [8].

All these Coulomb gas results are obtained by making certain reasonable, but non-
rigorous, assumptions about the long wavelength behaviour of an associated interface model.
The resulting critical exponents are however believed to be exact, and they have been
successfully tested against numerical Monte Carlo [1, 3] and transfer matrix [9, 6, 7] results.

To give the results obtained by the Coulomb gas a rigorous status, and to go beyond it
and derive results which are not obtainable from a continuum approach, it is natural to turn
to the methods of integrability. Following earlier work on the four-colouring model [10], Dei
Cont and Nienhuis [11] have very recently succeeded in finding a coordinate Bethe ansatz for
the equal-fugacity FPL2 model. In particular, they have computed the exact free energy in the
thermodynamic limit. Moreover, they have shown that when nb �= nw, the FPL2 model is not
integrable, in agreement with earlier expectations [6].

However, the coordinate Bethe ansatz is a rather complex technique, which, in order to be
made fully rigorous, would require investigation of a large number of specific configurations.
The goal of the present paper is to present a simpler alternative, in which the transfer matrix
of the equal-fugacity FPL2 model (henceforth we note n ≡ nb = nw) is identified with a
product of trigonometric R-matrices of Uq(ŝl(4)) with n = −q − q−1 (and an appropriate
twist). Applying the (nested) algebraic Bethe ansatz allows us to recover the Bethe equations
of [11] in a straigthforward fashion. As a bonus we obtain the central charge and the critical
exponents, which are found to agree with the non-rigorous results of [6]. We also comment
on an n → −n symmetry of some of the sectors of the transfer matrix.

The paper is organized as follows. The FPL2 model is defined in section 2. In section 3
we define its transfer matrix in terms of an R-matrix that adds four vertices and a twist matrix
that takes care of the boundary conditions. We then show how these matrices are related
to those of the affine quantum group Uq(ŝl(4)) with alternating fundamental and conjugate
representations. The corresponding Bethe ansatz equations are discussed in section 4, and
we reproduce, in particular, the eigenvalues of the transfer matrix [11]. Finally, in section 5,
we give the expressions of the central charge and conformal weights for n � 2, and we
compare our results to those obtained for fully packed loops on the hexagonal lattice.

2. The FPL2 model

Following [6], we reformulate the FPL2 model as a 24-vertex model. For each vertex of the
square lattice, the four incident edges are decorated with arrows of two possible orientations
(outgoing or ingoing with respect to the vertex) and two possible colours (black or white),
subject to the constraint that each of the four possibilities be represented exactly once around
every vertex. Clearly, following the arrows of a given colour traces out an oriented loop of
that colour. Note that reversing the arrows along any one loop, and leaving all other arrows
unchanged, leads to another allowed configuration.

We then assign a weight w = wbww to each vertex which is the product of weights wb and
ww coming from the oriented black and white loops, respectively. The black weight wb = ω

(resp. wb = ω−1) when the black loop makes a right turn (resp. a left turn) at the concerned
vertex and wb = 1 when the black loop goes straight. For the white weight we choose the
opposite convention, that is, with ω and ω−1 exchanged. The weights of the six types of
vertices which are unrelated by π/2 rotations are given in figure 1.
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ω2ω–21 1 1 1

Figure 1. The six types of vertices in the 24-vertex model (the remaining vertices are obtained by
π/2 rotations) with their corresponding weights.

Figure 2. Parity convention for vertices and edges of the square lattice. Even (resp. odd) edges
are shown in dashed (resp. solid) lines. Even (resp. odd) vertices are shown as open (resp. solid)
circles.

The FPL2 model with fugacity n for both colours of loops is recovered by summing
independently over the orientations of all loops (black and white). An anticlockwise (resp.
clockwise) black loop contributes ω4 (resp. ω−4) to the fugacity, as it must turn four times
more (resp. less) to the left than to the right. Thus, ω is fixed by

n = ω4 + ω−4. (2.1)

In order to apply the Bethe ansatz it is important to specify the boundary conditions. In
the following we shall specialize to the case where the square lattice is wrapped on a cylinder,
i.e., with periodic boundary conditions across a horizontal row of 2L vertices [6, 11]. Note
that the argument leading to (2.1) only works for contractible loops, i.e., loops that do not
wrap around the periodic direction. To obtain the correct weight also for non-contractible
loops, one introduces a vertical seam separating the first and the last vertex in each row [11].
Horizontal edges cutting the seam are assigned an extra weight of a (resp. a−1) when covered
by a left-pointing (resp. right-pointing) arrow; the convention does not depend on the colour
of the arrow. Clearly, non-contractible loops can only wind once, so a is fixed by

n = a + a−1. (2.2)

With these boundary conditions, the FPL2 model contains three conserved quantities [11].
To explain these, we shall adopt a convention for the parity of both the vertices and the edges,
as shown in figure 2. The three components of the conserved charge which are conserved by
the evolution along the cylinder are

Q =

L

L

L


 −


Nw↓ + Neb

N↓
Nw↓ + Nob


 (2.3)
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Figure 3. Convention for the labelling of arrow states on an even edge.

Figure 4. The FPL2 model R-matrix adds two even and two odd vertices as shown. The arrow
indicates the transfer direction. The parity of vertices and edges follows the conventions of figure 2.
The four dangling edges below (resp. above) the thin dashed line specify the in-state (resp. the
out-state).

where N is the number of vertical edges of a given parity (e = even, o = odd) in the concerned
row, b (black) or w (white) refers to the colour of the arrow and ↑ (up) or ↓ (down) to its
orientation. The constant term has been added for convenience. Strictly speaking, it would
make better sense to talk about conserved charges with respect to a parity convention for
the columns that does not alternate from row to row. In this respect, the charges (2.3) only
commute with the transfer matrix that adds two rows at a time.

3. The transfer matrix

Before proceeding further we shall adopt a convention for labelling the arrow state i = 1, 2, 3, 4
of each edge in the FPL2 model. This is shown in figure 3 for the case of an even edge; the
convention for an odd edge is similar, but with all arrows reversed (i.e., i → 5 − i).

We have seen above that from the point of view of the conserved charges, it is most natural
to build up the lattice by adding two rows at a time. We have also assumed that the horizontal
strip is of even width 2L. In order to define the row-to-row transfer matrix T, we first define
a 256 × 256 matrix, which we denote, in analogy with integrable models, by R; it adds four
vertices as shown in figure 4. Using the weights of figure 1, it is straightforward to write R
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R R

RR

Figure 5. R-matrix for two rows and two columns, which alternatingly carry the fundamental

representation of Uq(ŝl(4)) and its conjugate. The arrow indicates the transfer direction.

explicitly, in the basis obtained by using the labelling of figure 3 for the external lines and by
taking the tensor product of the corresponding vector spaces.

The transfer matrix that propagates the system in the upwards direction then reads

T = tra RaL · · · Ra2Ra1(�
−1 ⊗ �) (3.1)

where the subscript a denotes the ‘auxiliary space’ (the pair of horizontal lines) of dimension
16 and the subscripts 1, 2, . . . , L correspond to the L pairs of vertical lines which form the
‘physical space’. The twist �−1 ⊗ � is a matrix in the auxiliary space which takes care of
the effect of the seam; explicitly, � = diag(1/a, 1/a, a, a) acts on the upper horizontal line
whereas �−1 acts on the lower line. Note that this form of the twist has previously been
considered in [12, 13].

We now introduce another R-matrix which is related to the affine quantum group Uq(ŝl(4)),
where q = −ω−4 (so that n = −q − q−1), and which we call R. It is schematically described
figure 5, in which the two representations � and ���

of Uq(ŝl(4)) appear in an alternating fashion.

Conventions are such that at a vertex where two lines intersect, the first factor in the tensor
product refers to the leftmost line of the in-state, when seen along the transfer direction.

The four R-matrices which appear in figure 5 can be expressed as [14]

Ř�⊗�(x) = (qx − q−1x−1)P̌
��
�⊗� + (qx−1 − q−1x)P̌

��
�⊗� (3.2a)

Ř�⊗���
(x) = (q2x − q−2x−1)P̌

���
�

�⊗���
+ (q2x−1 − q−2x)P̌

∅
�⊗���

(3.2b)

Ř���
⊗�(x) = (q2x − q−2x−1)P̌

���
�

���
⊗� + (q2x−1 − q−2x)P̌

∅
���

⊗� (3.2c)

Ř���
⊗���

(x) = (qx − q−1x−1)P̌
���

���
���

⊗���
+ (qx−1 − q−1x)P̌

��
���

⊗���
. (3.2d)

We have, as usual, denoted Ř ≡ �R, where � is the operator that permutes the two factors
of the tensor product. The P̌ are intertwining operators of Uq(sl(4)) which can be computed
using representation theory; the parameter x is the ratio of spectral parameters of the horizontal
and vertical lines. We shall give the explicit matrix representations of the R-matrices below,
after fixing the values of x.
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In the present context, one can first define separately transfer matrices for even
and odd rows (however, only their product will be directly related to the previous
transfer matrix T ). Indeed, we define R���

(x) = R���
⊗�(x/x�)R���

⊗���
(x/x���

) and R�(x) =
R�⊗�(x/x�)R�⊗���

(x/x���
), where the products are meant as in figure 5, and the spectral

parameters of vertical lines x���
, x� are supposed to be fixed. Next define

T���
(x) = tr���

R���
L(x) · · · R���

2(x)R���
1(x)�−1 (3.3a)

T�(x) = tr�R�L(x) · · · R�2(x)R�1(x)� (3.3b)

where, as before, the indices determine the spaces on which the matrices act. Note that �

and �−1 can be considered as the same element of the Cartan subalgebra of Uq(ŝl(4)), but in
fundamental and conjugate representations, respectively. Due to the Yang–Baxter equation,
the T���

(x) and T�(x) form an infinite family of commuting matrices; their product, the

two-row transfer matrix T(x, y) = T�(x)T���
(y) = T���

(y)T�(x), is itself of the form

T(x, y) = traRaL(x, y) · · · Ra2(x, y)Ra1(x, y)(�−1 ⊗ �) (3.4)

where R(x, y) = R�(x)R���
(y).

We now claim that the two R-matrices for two rows and two columns R and R, which we
have introduced, are relate. At this point we choose all horizontal lines (whether odd or even)
to have the same spectral parameter, and similarly for all vertical lines, so that the ratio is
constant and is x = q−1. Note that at this unique value, the matrices Ř�⊗� and Ř���

⊗���
become

proportional to projectors onto the antisymmetric sub-representations. This enforces the fact
that at each vertex the four arrow states in figure 3 are each represented exactly once, i.e.,
among the 256 possible vertex states only the 24 shown in figure 1 will carry nonzero weight.

Explicitly (c = q−1 − q)

Ř�⊗�(q)

= c




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −q 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 −q 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −q 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 −q−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −q 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −q 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 −q−1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −q−1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −q 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 −q−1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 −q−1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −q−1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




(3.5a)
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Ř�⊗���
(q) = c




0 0 0 0 0 −q 0 0 0 0 −q3 0 0 0 0 −q5

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−q−1 0 0 0 0 0 0 0 0 0 −q 0 0 0 0 −q3

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

−q−3 0 0 0 0 −q−1 0 0 0 0 0 0 0 0 0 −q

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−q−5 0 0 0 0 −q−3 0 0 0 0 −q−1 0 0 0 0 0




(3.5b)

Ř���
⊗�(q) = c




0 0 0 0 0 −q 0 0 0 0 −q 0 0 0 0 −q

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−q−1 0 0 0 0 0 0 0 0 0 −q 0 0 0 0 −q

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

−q−1 0 0 0 0 −q−1 0 0 0 0 0 0 0 0 0 −q

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−q−1 0 0 0 0 −q−1 0 0 0 0 −q−1 0 0 0 0 0




(3.5c)

Ř���
⊗���

(q) = c




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −q−1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 −q−1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −q−1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 −q 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −q−1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −q−1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 −q 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −q 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −q−1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 −q 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 −q 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −q 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

(3.5d )
Note that we use the standard bases for � and ���

(which are dual bases of each other).
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ω–6

R

R

R

ωω –44

ωω6 –2

ω2

Figure 6. Examples of non-trivial R-matrix elements in the FPL2 model.

One can then check that

R = c4URU−1 (3.6)

where the constant c4 takes care of the extra factors in equations (3.5) and U is a
diagonal matrix that fully factorizes as a tensor product over the four incoming lines:
U = Uh� ⊗ Uh���

⊗ Uv���
⊗ Uv�, with as a possible choice

Uh� =




ω6 0 0 0
0 ω4 0
0 0 ω2 0
0 0 0 1


 Uh���

=




ω6 0 0 0
0 ω4 0 0
0 0 ω2 0
0 0 0 1




Uv� =




ω12 0 0 0
0 ω8 0 0
0 0 ω4 0
0 0 0 1


 Uv���

=




ω−6 0 0 0
0 ω−4 0 0
0 0 ω−2 0
0 0 0 1


 .

(3.7)

Consequently, the corresponding transfer matrices T and T are also similar up to a constant:

T = c4LUvT U−1
v (3.8)

where Uv is the tensor product of Uv���
and Uv� for all vertical lines.

Obviously, space does not permit us to reproduce the resulting 256 × 256 matrices R and
R. Rather, figure 6 gives three examples of matrix elements. Note that our convention for the
R-matrix (see figure 4) is to keep fixed indices for the horizontal and vertical lines. Thus, if the
arrow configuration (coded as in figure 1) is ρ4ρ3ρ2ρ1 for the out-state (read from left to right
when looking along the transfer direction), it is ρ2ρ1ρ4ρ3 for the in-state. The three examples
in figure 6 then read explicitly R81,18 = ω6 +ω−2; R103,91 = ω−6 +ω2 and R239,188 = ω4 +ω−4.
The corresponding entries of R are found from (3.6).



Algebraic Bethe ansatz for the FPL2 model 7221

4. Algebraic Bethe ansatz

The set of commuting transfer matrices T�(x), T���
(x) can be diagonalized using the so-called

nested Bethe ansatz. We shall not describe this procedure here and refer to [15–17] for
details. The eigenstates are built by the action of operators which depend on parameters
that we call u

(i)
k , with i = 1, 2, 3 and k = 1, . . . , m(i), on a reference eigenstate (highest

weight state) which has only white arrows pointing up. These parameters satisfy equations,
which, in our parametrization, are algebraic in the eiγ u

(i)
k , where γ is such that q = −e−iγ .

Explicitly, call ω(i) the diagonal elements of the twist � in the fundamental representation
(here, ω(1) = ω(2) = 1/a, ω(3) = ω(4) = a), with

∏4
i=1 ω(i) = 1; and define the functions

Q(i)(u) = ∏m(i)

k=1 sin γ
(
u − u

(i)
k

)
, i = 1, 2, 3. Q(0) ≡ Q(4) ≡ 1. Then the Bethe ansatz

equations read

−Q(i+1)
(
u

(i)
k + 1

)
Q(i+1)

(
u

(i)
k

) Q(i)
(
u

(i)
k − 1

)
Q(i)

(
u

(i)
k + 1

) Q(i−1)
(
u

(i)
k

)
Q(i−1)

(
u

(i)
k − 1

) = ω(i)

ω(i+1)

f (i)
(
u

(i)
k

)
f (i+1)

(
u

(i)
k

) (4.1)

for 1 � i � 3, 1 � k � m(i). The functions f (i) depend on the representations and
spectral parameters of the physical space (and on the twist); here, one easily computes
f (1)(u) = ω(1)(sin γ u sin γ (u − 1))L, f (i)(u) = ω(i)(sin γ (u + 1) sin γ (u − 1))L for i = 2, 3,
f (4)(u) = ω(4)(sin γ (u + 1) sin γ u)L.

The corresponding eigenvalues of T���
(u) and T�(u), in the parametrization x = −eiγ (u+1),

are

t�(u) = X(1)(u) + X(2)(u) + X(3)(u) + X(4)(u) (4.2a)

t���
(u) = X̃(1)(u) + X̃(2)(u) + X̃(3)(u) + X̃(4)(u) (4.2b)

where

X(i)(u) = Q(i−1)(u − 1)

Q(i−1)(u)

Q(i)(u + 1)

Q(i)(u)
f (i)(u) and

X̃(i)(u) = Q(i−1)(u + i − 2)

Q(i−1)(u + i − 3)

Q(i)(u + i − 3)

Q(i)(u + i − 2)
f (5−i)(u).

We now choose u = 0, so that the X(1), X(4), X̃(1), X̃(4) vanish (this, once again, can be
interpreted as a consequence of the requirement that two loops of the same colour do not cross
each other). Finally, we consider the two-row matrix T = T�T���

. Its eigenvalue is obtained

by taking the product of the remaining terms in equations (4.2); rewriting the X(i) as functions
of Q(i), getting rid of the extra factors sin γ which compensate the factors of c in equation
(3.8), we find the eigenvalues of T to be

t = 2
Q(2)(1)Q(2)(−1)

Q(2)(0)2
+

ω(2)

ω(3)

(
Q(2)(1)

Q(2)(0)

)2
Q(1)(−1)

Q(1)(0)

Q(3)(0)

Q(3)(1)

+
ω(3)

ω(2)

(
Q(2)(−1)

Q(2)(0)

)2
Q(1)(0)

Q(1)(−1)

Q(3)(1)

Q(3)(0)

=

a−1 Q(2)(1)

Q(2)(0)

√
Q(1)(−1)

Q(1)(0)

Q(3)(0)

Q(3)(1)
+ a

Q(2)(−1)

Q(2)(0)

√
Q(1)(0)

Q(1)(−1)

Q(3)(1)

Q(3)(0)




2

(4.3)
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where in the last line we have used the explicit expression of the twist. This is precisely the
square of the expression found in [11] for the one-row transfer matrix. The notation is as
follows:

uk ≡ 2i
(
u

(1)
k + 1/2

)
vk ≡ 2i

(
u

(3)
k − 1/2

)
wk ≡ 2i u(2)

k . (4.4)

Furthermore, the Cartan subalgebra produces three conserved quantities; in fundamental and
conjugate representations, they have the following expression (basis of the dual of the root
lattice):

Q1�

−Q1���

}
=




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 − 1

4
I · · ·

Q2�

−Q2���

}
=




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 − 1

2
I · · ·

Q3�

−Q3���

}

=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 − 3

4
I. (4.5)

Combining this with the corresponding representation given in figure 3, it will be easier to
identify them with the components of the charge Q of equation (2.3). Their value is determined
by the numbers m(i) of Bethe roots of kind i: each root of kind i decreases by one the ith

component of the charge, starting from the reference state which has Q = (
L
L
L

)
. Comparing

with equation (2.3), we deduce that

m(1) = Nw↓ + Neb m(2) = N↓ m(3) = Nw↓ + Nob. (4.6)

Note that if m(1) > 0 but m(3) = 0, only even arrows are modified compared to the
reference state (i.e., all odd arrows are white pointing up); and similarly for m(3) > 0,m(1) = 0
and odd arrows.

5. Results and conclusions

We have found that the nested algebraic Bethe ansatz can be used to solve the FPL2 model at
nb = nw. The latter is therefore identified with a standard integrable vertex model associated
with Uq(ŝl(4)). Its weights, combined in 2×2 square blocks of vertices, satisfy a Yang–Baxter
equation; its two-row transfer matrix is embedded into an infinite set of commuting transfer
matrices; and many results follow immediately.

In particular, the long distance behaviour of this type of model has been studied by many
methods (see for instance [18–21]). For |n| > 2, the spectrum has a gap and the correlation
length is finite. In the following we focus instead on the critical regime |n| � 2, and we
parametrize n = 2 cos γ .

As our model is isotropic, we expect the largest eigenvalue of the transfer matrix to have
the following asymptotic behaviour [22]:

log t0(L) = −Lf0 +
πc

6L
+ · · · for L → ∞ (5.1)

where c is the central charge of the infrared conformal field theory. Here, note that only
fundamental representations (� and ���

) are used, so we deal with a non-fused model. Assuming

the usual form for the ground state, standard computations (see, e.g., [21]) lead, in this type
of model, to the following form of c:

c = r − 3

π(π − γ )
〈w| C−1 |w〉 (5.2)
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where r and C are, respectively, the rank and the Cartan matrix of the underlying algebra and
w is a vector with components ws = 1

i log(ω(s)/ω(s+1)), that parametrizes the twist. If we
now specialize to A3 and to our choice of boundary conditions: w1 = w3 = 0, w2 = −2γ ,
we obtain

c = 3 − 12
γ 2

π(π − γ )
(5.3)

which coincides with what was found in [4]. Note that this is not the central charge of the
W(A3) conformal field theory—the latter can also be obtained within the framework of this
model, but with a different twist.

One can also investigate the nature of excitations above the ground state. They are, of
course, gapless and describe solitons associated with the three fundamental representations
of A3 interacting with the standard S-matrices [21, 23], plus possible bound states in
certain regimes of γ . In the infrared limit the dispersion relation can be linearized and
the corresponding low-lying excited states are related to the conformal weights �n of the
aforementioned CFT via

log tn(L) = −Lf0 +
π(c − 24�n)

6L
+ · · · for L → ∞. (5.4)

One can check that the weights thus obtained fit with the formulae of the Coulomb gas picture:

�n = 1
4 〈e| K−1 |e − 2e0〉 + 1

4 〈m|K |m〉 (5.5)

where K = 1
2 (1 − γ /π)C, e (resp. m) is the electric (resp. magnetic) charge which belongs

to the lattices of weights (resp. roots) of A3 and e0 is the background charge related to our
twist by e0 = 1

2π
w. This constitutes a confirmation of the results of [5]. Incidentally, the

fact that for nb �= nw the quadratic form K appearing in the conformal weights, as given
in [5], is generically not related to a Cartan matrix can be considered an indication of the
non-integrability of the model.

We have made some numerical checks of the structure of the ground state and excited
state described above. It turned out that, this picture was confirmed for n � 0; however,
for n < 0 the ground state of the usual form (with, using the notation of equation (4.4), real
uk, vk, wk) is not the state corresponding to the dominant eigenvalue of the transfer matrix.
Indeed, we have found an n → −n symmetry of the eigenvalue spectrum corresponding to
the sectors where both L − m(2) and m(1) + m(3) are even, cf equation (4.6); this applies thus
in particular to the ground-state sector which has m(1) = m(2) = m(3) = L. This symmetry
can be described in the Bethe ansatz equations as the transformation of the Bethe roots (with
the notation of equation (4.4)):

γ uk → −(π − γ )uk γ vk → −(π − γ )vk γwk → −(π − γ )wk + iπ (5.6)

where we recall that n = 2 cos γ , so that −n = 2 cos(π − γ ). One can check that this
transformation leaves the eigenvalues (4.3) invariant. In particular, we conclude that the ‘real’
ground-state eigenvalue t0 only depends on |n| and identifies with the one described above
only for n � 0. For n < 0, the ‘fake’ ground-state eigenvalue corresponds to a state very
high above the real ground state (even the bulk part differs as L → ∞ [11]), whose special
property is that it is the analytic continuation of the n > 0 ground-state eigenvalue. For
example, at n = −2, the (fake) ground-state eigenvalue found in [11] is equal to 2 irrespective
of L, whereas the largest eigenvalue diverges exponentially with L.

Note that the situation where two levels corresponding to different free energies f0 and to
different finite-size corrections c, are present in the same transfer matrix is not unheard of. For
example, the zero-temperature Ising antiferromagnet is equivalent to a one-component height



7224 J Jacobsen and P Zinn-Justin

model, whose continuum limit is a free bosonic field, whence c = 1 [24]. On the other hand,
the same model also resides on the self-dual curve of the q-state Potts model on which it is
integrable; by specializing the results valid on that curve, one finds c = −25/2 and a different
bulk free energy. There is no contradiction in this, since the amplitude of the latter eigenvalue
vanishes at q = 2. It is possible that a similar phenomenon occurs in the FPL2 model, at least
for some discrete values of n < 0, but establishing this would require further investigations.
In particular, proper care must be taken in specifying the boundary conditions and in treating
winding loops.

We remark that the symmetry of the ground-state sector holds true more generally for the
nb �= nw FPL2 model, under the transformation (nb, nw) → (−nb,−nw). This is based on
the observation that, with suitable periodic boundary conditions, all terms in the high-fugacity
expansion of the partition function have Nb + Nw even, where Nb (resp. Nw) is the number of
black (resp. white) loops. To see this, represent the dominant state at nb, nw → ∞ as an ‘ideal
state’ in the four-colouring picture [1], with black (resp. white) loops being an alternation
of colours 1 and 2 (resp. 3 and 4). Note that the high-fugacity expansion of the 1–2 (black)
and 3–4 (white) loops (disregarding their orientation) can be obtained by only permuting the
colours around the two other types of small loops (say, of types 1–3 and 2–4), and that these
loops remain of length 4. Examining all possible 1–2 and 3–4 loop environments of a plaquette
occupied by the 1–3 and 2–4 loops proves our statement.

It is interesting to compare our results with the work of Reshetikhin [25] on fully packed
loops on the hexagonal lattice. After contracting the vertices of the hexagonal lattice two by
two, so as to form a square lattice, this author identified the R-matrix with that of the integrable
model Uq(ŝl(3)). The choice of spectral parameter, as in our case, makes Ř degenerate into
a projection operator. However, there are important differences. First, in [25] the underlying
algebra is of course different and all horizontal and vertical lines carry the same representation
� of Uq(ŝl(3)), in contrast to the alternation of � and ���

used here. Second, in [25] there is no

twist � in the auxiliary space, whence contractible and non-contractible loops carry respective
weights of n and 2. In particular, for n � 2, the central charge is constant, c = 2. When
n = 2, the continuum limit of the hexagonal-lattice loop model becomes an SU(3)k=1 free field
Wess–Zumino–Witten theory; this is a consequence of the Uq(ŝl(3)) identification and of the

fact that only the fundamental representation is used. Likewise, the Uq(ŝl(4)) identification of
the FPL2 model reported in the present work implies that the n = 2 case is an SU(4)k=1 WZW
theory in the continuum limit. Indeed, the four-colouring model was originally constructed
by Read [2] so as to have an SU(4)k=1 symmetry. It would be interesting to study the relation
of integrable models based on Uq(ŝl(N)), with N > 4, to more general models of colourings
and/or of fully packed loops.
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